Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention
نویسندگان
چکیده
Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Although behavioural training can reduce these deficits, it is unclear which neuronal resources show a functional reorganization due to training. We examined typically developing (TD) children (N=16, mean age: 9.5 years) and age-, gender-, and handedness-matched children with DD (N=15, mean age: 9.5 years) during the performance of a numerical order task with fMRI and functional connectivity before and after 5-weeks of number line training. Using the intraparietal sulcus (IPS) as seed region, DD showed hyperconnectivity in parietal, frontal, visual, and temporal regions before the training controlling for age and IQ. Hyperconnectivity disappeared after training, whereas math abilities improved. Multivariate classification analysis of task-related fMRI data corroborated the connectivity results as the same group of TD could be discriminated from DD before but not after number line training (86.4 vs. 38.9%, respectively). Our results indicate that abnormally high functional connectivity in DD can be normalized on the neuronal level by intensive number line training. As functional connectivity in DD was indistinguishable to TD's connectivity after training, we conclude that training lead to a re-organization of inter-regional task engagement.
منابع مشابه
Neuroimaging Aspects in Children with Dyscalculia
Functional neuroimaging has made remarkable progress in the last years and provided new data on numerical and calculation processes. While there is a large amount of research regarding the arithmetic skills in adults, there are currently only a few functional studies approaching the arithmetic abilities in children. Although the neuroimaging studies regarding dyscalculia have provided variable ...
متن کاملDevelopmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students.
Thirty-one 8- and 9-year-old children selected for dyscalculia, reading difficulties or both, were compared to controls on a range of basic number processing tasks. Children with dyscalculia only had impaired performance on the tasks despite high-average performance on tests of IQ, vocabulary and working memory tasks. Children with reading disability were mildly impaired only on tasks that invo...
متن کاملLongitudinal Brain Development of Numerical Skills in Typically Developing Children and Children with Developmental Dyscalculia
Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investiga...
متن کاملComputer Based Screening Dyscalculia: Cognitive and Neuropsychological Correlates1
Mathematical skills are becoming increasingly critical for achieving academic and professional success. Developmental dyscalculia (DD) is a childhood-onset disorder characterized by the presence of abnormalities in the acquisition of arithmetic skills affecting approximately 5% of school age children. Diagnosing students with possible dyscalculia tendencies and giving them relevant extra learni...
متن کاملBehavioral and Brain Functions
Background: In a companion article [1], we described the development and evaluation of software designed to remediate dyscalculia. This software is based on the hypothesis that dyscalculia is due to a "core deficit" in number sense or in its access via symbolic information. Here we review the evidence for this hypothesis, and present results from an initial open-trial test of the software in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cognitive neuroscience
دوره شماره
صفحات -
تاریخ انتشار 2017